位置识别是可以协助同时定位和映射(SLAM)进行循环闭合检测和重新定位以进行长期导航的基本模块。在过去的20美元中,该地点认可社区取得了惊人的进步,这吸引了在计算机视觉和机器人技术等多个领域的广泛研究兴趣和应用。但是,在复杂的现实世界情景中,很少有方法显示出有希望的位置识别性能,在复杂的现实世界中,长期和大规模的外观变化通常会导致故障。此外,在最先进的方法之间缺乏集成框架,可以应对所有挑战,包括外观变化,观点差异,对未知区域的稳健性以及现实世界中的效率申请。在这项工作中,我们调查针对长期本地化并讨论未来方向和机会的最先进方法。首先,我们研究了长期自主权中的位置识别以及在现实环境中面临的主要挑战。然后,我们回顾了最新的作品,以应对各种位置识别挑战的不同传感器方式和当前的策略的认可。最后,我们回顾了现有的数据集以进行长期本地化,并为不同的方法介绍了我们的数据集和评估API。本文可以成为该地点识别界新手的研究人员以及关心长期机器人自主权的研究人员。我们还对机器人技术中的常见问题提供了意见:机器人是否需要准确的本地化来实现长期自治?这项工作以及我们的数据集和评估API的摘要可向机器人社区公开,网址为:https://github.com/metaslam/gprs。
translated by 谷歌翻译
我们提出了BioSlam,这是一个终生的SLAM框架,用于逐步学习各种新出现,并在先前访问的地区保持准确的位置识别。与人类不同,人工神经网络遭受灾难性遗忘的困扰,并在接受新来者训练时可能会忘记先前访问的地区。对于人类而言,研究人员发现,大脑中存在一种记忆重播机制,可以使神经元保持活跃。受到这一发现的启发,Bioslam设计了一个封闭式的生成重播,以根据反馈奖励来控制机器人的学习行为。具体而言,BioSlam提供了一种新型的双记忆机制来维护:1)动态记忆有效地学习新观察结果,以及2)平衡新老知识的静态记忆。当与基于视觉/激光雷达的SLAM系统结合使用时,完整的处理管道可以帮助代理逐步更新位置识别能力,从而强大,从而增强长期位置识别的复杂性。我们在两个渐进式猛击场景中展示了Bioslam。在第一种情况下,基于激光雷达的特工不断穿越具有120公里轨迹的城市尺度环境,并遇到了不同类型的3D几何形状(开放街,住宅区,商业建筑)。我们表明,BioSlam可以逐步更新代理商的位置识别能力,并优于最先进的增量方法,即生成重播24%。在第二种情况下,基于激光镜的代理商在4.5公里的轨迹上反复穿越校园规模区域。 Bioslam可以保证在不同外观下的最先进方法上优于15%的地方识别精度。据我们所知,BioSlam是第一个具有记忆力增强的终身大满贯系统,可以帮助长期导航任务中的逐步识别。
translated by 谷歌翻译
分子特性预测在药物发现中起着基本作用,以鉴定具有目标性质的候选分子。然而,分子特性预测基本上是几次射门问题,这使得难以使用普通机器学习模型。在本文中,我们提出了一个属性感知的关系网络(PAR)来处理此问题。与现有的作品相比,我们利用了不同分子特性的相关子结构和关系的事实。我们首先介绍一个属性感知的嵌入功能,将通用分子嵌入的功能转换为与目标属性相关的子结构感知空间。此外,我们设计了一个自适应关系图学习模块,共同估计了分子关系图和优化分子嵌入W.R.T.目标性质,使得有限标签可以有效地在类似的分子之间繁殖。我们采用元学习策略,其中参数在任务中选择性地更新,以便单独模拟通用和属性感知的知识。基准分子特性预测数据集的广泛实验表明,始终如一地优于现有方法,并可以正确获得性能感知分子嵌入和模型分子关系图。
translated by 谷歌翻译
随着变压器作为语言处理的标准及其在计算机视觉方面的进步,参数大小和培训数据的数量相应地增长。许多人开始相信,因此,变形金刚不适合少量数据。这种趋势引起了人们的关注,例如:某些科学领域中数据的可用性有限,并且排除了该领域研究资源有限的人。在本文中,我们旨在通过引入紧凑型变压器来提出一种小规模学习的方法。我们首次表明,具有正确的尺寸,卷积令牌化,变压器可以避免在小数据集上过度拟合和优于最先进的CNN。我们的模型在模型大小方面具有灵活性,并且在获得竞争成果的同时,参数可能仅为0.28亿。当在CIFAR-10上训练Cifar-10,只有370万参数训练时,我们的最佳模型可以达到98%的准确性,这是与以前的基于变形金刚的模型相比,数据效率的显着提高,比其他变压器小于10倍,并且是15%的大小。在实现类似性能的同时,重新NET50。 CCT还表现优于许多基于CNN的现代方法,甚至超过一些基于NAS的方法。此外,我们在Flowers-102上获得了新的SOTA,具有99.76%的TOP-1准确性,并改善了Imagenet上现有基线(82.71%精度,具有29%的VIT参数)以及NLP任务。我们针对变压器的简单而紧凑的设计使它们更可行,可以为那些计算资源和/或处理小型数据集的人学习,同时扩展了在数据高效变压器中的现有研究工作。我们的代码和预培训模型可在https://github.com/shi-labs/compact-transformers上公开获得。
translated by 谷歌翻译